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1 Introduction

Road transport accounted for nearly 25% of the world’s total of carbon dioxide emissions

in 2023 (IEA, 2023), the leading contributor to climate change. To curb emissions, many

cities around the world are stepping up efforts to incentivise a shift towards more sustainable

modes of transport, such as investing in the development of bike infrastructure. Nonetheless,

a trade-off between social and private gains may arise, with special interest groups sometimes

ending up opposing these investments. For instance, shop owners are often against the

development of bike lanes because they could make it harder for cars to park nearby, thus

harming their business.1

This paper sheds light on this potential trade-off by providing, for the first time, robust

evidence on the impact of cycling infrastructure on local economic activity. In particular,

we study the effect of the development of a large-scale bike lane network on non-tradable

spending as the primary outcome of interest, in addition to firm entry, housing prices and car

traffic as secondary ones. We focus on the deployment of the Plan Vélo in the city of Paris,

a major initiative aimed at promoting a transition towards active mobility that consisted in

the construction of approximately 80 km of bike lanes between 2017 and 2020.2 We leverage

the staggered development of the infrastructure and the ensuing changes in bilateral travel

costs by bike to construct a time- and space-varying measure of firm-level market access. We

then estimate the elasticity of local revenues to market access using geolocated data covering

nearly the universe of card transactions made by French residents provided by Groupement

des Cartes Bancaires CB.3 With the estimated elasticity at hand, we assess the cumulative

gain/loss for local businesses from the development of the new bike infrastructure and the

spatial reallocation of spending that it entailed. To complement our results on the effects of

this new cycling infrastructure on business revenues, we study its effects on housing prices,

firm entry and car traffic.

We estimate the economic impact of the new bike transport infrastructure through a

market access approach. Firm-level market access captures the potential demand that each

business can reach conditional on consumers’ preferred route and mode of transport. We

measure market access using a 180-by-180-meter grid covering the city of Paris for every

1Various case studies show that retailers overestimate the share of customers that arrive by car and believe
that bike lanes might lead to a loss in revenue. See the press article on Bloomberg CityLab “The Complete
Business Case for Converting Street Parking Into Bike Lanes”, accessed on March 16, 2024.

2We end our analysis in November 2019 to avoid the disruptions to public transport caused by the national
strike in December 2019 and the start of the COVID-19 pandemic.

3These data were made available thanks to a partnership with Groupement des Cartes Bancaires CB,
and we exploit the card payments data in accordance with the EU General Data Protection Regulation, in
application of Article 89. We use the abbreviation ‘CB’ hereafter to indicate the source of the card payments.
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quarter between 2015 and 2019. Market access for a business location is defined as the

weighted sum of demand for non-tradables across all possible origin locations, with weights

that are inversely proportional to the bilateral travel disutility between the origin locations

and the location of a business. In turn, these bilateral travel disutilities depend, via a travel

elasticity, on a weighted sum of bilateral travel costs across transport modes, with weights

proportional to consumers’ preferences for each mode. The travel elasticity and consumers’

preferences for each mode are obtained by feeding measured travel costs and commuting sur-

vey data into the preliminary estimation of a conditional logit model disciplining consumers’

choice of how to go shopping. The nesting of a modal choice into our modelling of consumers’

behaviour allows us to account for imperfect substitution across transport modes and thus

for an increase in the number of consumers going shopping by bike potentially matched by

a decline in the number of those going by car.

Having measured market access for each grid cell in Paris for every quarter between 2015

and 2019, we regress the total value of card transactions on these measures of market access

to estimate the elasticity of business revenues to market access. Since our measure of market

access captures the effect of the new cycling infrastructure on the transport network, this

elasticity can be interpreted as the effect of the new bike lanes on business revenues.

One important concern, however, is that the development of bike lanes can be endogenous

to economic activity in a given location, presenting a potential identification challenge. To

address this concern, we instrument our measure of market access with an alternative measure

that relies only on changes in the travel costs (due to the new cycling infrastructure) far

away from a given location. The identifying assumption underlying this strategy is that the

development of bike lanes in more distant parts of the city is uncorrelated with the economic

conditions in any given location.

Our preferred estimation of the elasticity of business revenues to market access is 5.17.

This means that the average improvement in market access, a 0.93% increase, equivalent to

the development of 46 meters of bike lanes in a given grid cell, resulted in a 4.81% increase

in business revenues, amounting to approximately 100,000 euros per quarter. Considering

the average number of businesses per grid cell, this resulted in an average gain of 3,000 euros

per business. We find that this effect is driven by an increase in the volume of transactions

and not by an increase in size, suggesting that bike infrastructure induced more frequent but

equally large transactions.

Business revenues in a given location can increase for two main reasons: improved con-

nectivity and better amenities. First, easier commutes due to new bike lanes can attract
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more visitors to the area (connectivity channel). Second, the area may become a more

pleasant shopping destination if complementary pedestrianization measures are introduced

alongside the bike lanes (amenity channel). We use a measure of the density of local bike

lanes, measured as the total length of bike lanes in the immediate surroundings, to separate

the effect of the amenity channel on business revenues from the effect of the connectivity

channel. If bike lanes provide a direct amenity effect to businesses located near them, then,

for a given increase in connectivity, being exposed to more local bike lanes (because of a

higher density of bike lanes in the grid cell) should lead to increases in business revenues

through changes in the amenity value of the area. Conversely, for a given density of local

bike lanes, a larger increase in market access should affect business revenues only through

the connectivity channel.

We implement a large battery of robustness checks to eschew endogeneity issues. First,

we address the potential bias arising from the fact that certain places, owing to their central

location, end up being more than proportionally impacted by infrastructure development

(Borusyak and Hull, 2023). We do so by removing from our sample either central locations

in a geographical sense, or locations qualifying as transport hubs according to the public

transit network. Second, we show the absence of pre-trends in our outcomes of interest,

addressing the potential bias arising from the endogenous placement of the new bike lanes.

Similarly, we find no evidence that observables systematically predict the timing of bike lane

development, thereby ruling out potential bias from endogeneity in the network development

timing. Third, we show that our results survive when considering a smaller, more homoge-

neous sample of locations. This is achieved by comparing developed areas to those with bike

lanes included in the original network plan that remained undeveloped by the end of 2019.

Fourth, we show that household sorting is not driving our results as the demographic com-

position of neighbourhoods remains stable throughout our study period. This is consistent

with household sorting being a medium-term process rather than a short-term one. Fifth,

we check that our results are not driven by substitution between card and cash payments.

Next, we investigate the existence of heterogeneous effects by dividing the city into clus-

ters with similar business characteristics. We find evidence that the positive effects of bike

lanes on local business revenues (through changes in market access) are driven by the pres-

ence of small and young businesses as well as food-related industries, such as cafes, fast food

restaurants or bars in the affected locations. This is consistent with bike lanes attracting

more traffic to small and newer businesses by increasing their salience. Travelling by bike

as opposed to car or public transit arguably allows consumers to be better aware of avail-
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able shopping opportunities, since cyclists travel above ground and at lower speeds, which

allows them to stop more easily to visit a store along their ride. Moreover, pedestrianisation

infrastructure that often come along with the development of bike lanes might favour com-

bined cycling-walking shopping trips, with “footfall” externalities adding up to the potential

benefits for businesses in areas affected by the new cycling infrastructure (Koster et al.,

2019).

Having described the effects of the Plan Vélo on business revenues, we then consider

how this new infrastructure might have affected other important outcomes. First, we do not

detect a statistically significant effect of market access changes (due to the new bike lanes)

on firm entry. While a monopolistic competition model with free entry might be consistent

with a positive relationship, a possible explanation for this null result is that commercial

rents might have increased following the rise in local business profitability brought about by

the new infrastructure. Unfortunately, we are unable to test this hypothesis in this paper

due to a lack of data on commercial rents. Second, we test the impact of market access

on residential housing prices. Again, we do not find any significant effect of the increase in

market access due to the new infrastructure on residential housing prices. We argue that

the potential effect of the new infrastructure on housing prices might accrue especially via

an amenity channel, as opposed to a pure connectivity or market access channel. We detect

a positive elasticity of housing prices to the local bike lane density control in line with this

hypothesis and with existing work (Garcia-López et al., 2024). Third, we find a negative

impact of market access on the total number of cars transiting through a given grid cell.

This effect is consistent with a modal shift, where consumers reduce their travel by car and

increase their travel by bike to locations that see an increase in connectivity by bike. An

alternative explanation is that bike lane development occurred together with the removal of

car lanes or the introduction of speed limits, which further discouraged car usage. However,

since we are controlling for the density of new bike lanes in each grid cell, it seems unlikely

that the possible removal of car lanes when introducing bike lanes can explain the entire

magnitude of the effect.

In the last part of the paper, we identify which locations gained or lost in relative terms

from the development of the new bike infrastructure. We find that the pre/post difference in

business revenues generated exclusively by the variation in market access has been positive for

45% of cells in our sample and negative for the remaining others. The uneven impact of the

infrastructure can be explained by analysing the characteristics of the locations that benefited

the most from the development of the new bike network. Locations where market access
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improved are on average 1) more centrally located, and 2) characterised by lower total income,

mostly due to very low residents density. Based on our analysis, an important consequence of

the development of Plan Vélo was to increase non-tradable spending in central/less densely

populated districts at the expense of peripheral/more densely populated ones. For instance,

our model predicts that after the development of Plan Vélo the fraction of residents of the

south- and north-west quadrants of the city that give up shopping locally and prefer going

to the city centre goes up since it is now easier to get there by bike.

Related literature This paper contributes to different bodies of the economic literature.

First, it is related to the research strand that looks at the link between transport infrastruc-

ture and economic activity. The first wave of papers in this literature investigate the impact

of getting access to a new infrastructure on outcomes such as employment (Duranton and

Turner, 2012; Mayer and Trevien, 2017), population (Baum-Snow, 2007; Gonzalez-Navarro

and Turner, 2018) and property prices (Gibbons and Machin, 2005; Billings, 2011). A rela-

tively more recent set of papers follows a market access approach, where the potential gains

stem from getting connected to more attractive/richer places as opposed to merely getting

connected to the new infrastructure (Ahlfeldt et al., 2015; Heblich et al., 2020; Gorback,

2020; Tsivanidis, forthcoming; Warnes, 2024). This paper contributes to this literature by

providing the first empirical assessment of the economic impact of a large-scale new cycling

infrastructure in a major European capital city.

This study is also related to a recent strand of the literature that focuses on the mea-

surement of the geography of spending in the non-tradable sector by means of large-scale

spatial datasets, such as online review data (Davis et al., 2019), mobile phone data (Athey

et al., 2018; Miyauchi et al., 2021) and card transactions data (Relihan, 2022; Allen et al.,

2020; Agarwal et al., 2017; Diamond and Moretti, 2021; Bounie et al., 2023). We contribute

to this literature by leveraging a high-frequency, geolocalised card transaction level dataset

to measure the effects of new cycling infrastructure on local economic activity covering the

near totality of card transactions made by French residents (Landais et al., 2020).

Our work is especially related to Galdon-Sanchez et al. (2023), who evaluate the impact

of car driving restrictions on local spending in the city of Madrid, which is another type of

transport policy increasingly common among European cities. Galdon-Sanchez et al. (2023)

find that areas directly affected by the driving restrictions (in the form of Low Emission

Zones) witnessed a decline in local spending as proxied by card spending. If we consider that

businesses in these areas saw a decrease in accessibility by car with no compensating increase

in accessibility by other modes of transport, businesses in these areas likely decreased their
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market access. In this sense, our findings are conceptually aligned with those in Galdon-

Sanchez et al. (2023). In our case, areas undergoing an improvement in available transport

infrastructure experience an increase in local spending while at the same time observing a

decrease in the volume of car traffic. This difference in outcomes between these two policies

highlights the potential benefits of providing alternative modes of transport that are more

sustainable, as opposed to command-and-control policies for reducing car traffic in cities.

Methodologically, a distinguishing feature of our paper relative to Galdon-Sanchez et al.

(2023), is our use of a market access-based approach. This approach allows us to identify

the impact of the new cycling infrastructure on the entire city, and not just the areas near

the new bike lanes. This methodological choice adds realism to the quantification exercise,

given that transport infrastructure investments, even localised ones, rarely have an isolated

impact, but rather interact with the pre-existing network, which amplifies and propagates

their effects.

This research evaluates the economic effects of the development of a large-scale cycling

network, a policy that had the stated objective of significantly greening the transportation

sector in the city of Paris. Hence, we contribute to that body of the environmental economics

literature that focuses on the impact of pollution reduction policies in cities, such as car usage

restrictions on congestion (Bou Sleiman, 2024; Tassinari, 2024) and on economic activity

(Viard and Fu, 2015; Galdon-Sanchez et al., 2023). Currie and Walker (2019) provide a

summary of this body of research. Closer to our setting, we relate to the recent literature

evaluating the consequences of cycling infrastructure on bike use, car congestion, pollution

and housing prices (Thorne, 2022; Bernard, 2023; Garcia-López et al., 2024).

The remainder of the paper is organised as follows. Section 2 describes the development

of the new layer of bike lanes in the city of Paris in 2015. Section 3 presents the conceptual

framework employed in the analysis. Section 4 describes the data. Section 5 details the

empirical strategy used to identify the elasticity of local economic activity to market access.

Section 6 discusses the results. Finally, Section 7 concludes.

2 The Plan Vélo

The administration that took office in 2015 in Paris prioritised a significant expansion of the

cycling network, favouring a substantial transition towards active mobility. The initiative was

labelled Plan Vélo and it consisted of about 80 km of new bike lanes, for a total investment
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of 150 million euros to be developed between 2015 and 2020 (Mairie de Paris, 2015).4 The

new plan was organised around two main axes (North-South and West-East), and a series

of large routes that were set to become the main arteries of the new network (Boulevard

Voltaire, Haussmann, Avenue Friedland, the Quais de Seine and Rue de Rivoli).

The Plan Vélo got off to a slow start: only 4% of bike lanes were constructed from 2015

to 2017. In February 2017, an independent observatory, the Observatoire du Plan Vélo de

Paris, was set up to monitor the advancement of the development of the plan.5

Once it took off, the plan unfolded relatively quickly, with 57 km of bike lanes (71%

of the original total length) developed between July 2017 and November 2019 - the last

month in our study period. Figure 1 represents different development stages of the plan.

The transformation of Paris into an increasingly bike-friendly city is mirrored by the swift

increase in bike usage, which grew at the average monthly rate of 15% during 2018-2019

(Figure A1).

The construction of the network was coordinated at the municipal level, and it thus left

little leeway to district mayors to steer the development towards their places of interest, thus

relaxing potential concerns about the endogeneity of location and/or timing. The timing of

development appeared rather to follow technical criteria that were independent of economic

activity, such as, for example, the decision to develop first the areas located close by the two

main axes (North-South and West-East), or the bike lanes that had a longer total extension.

We argue that these two features of the development process are amenable from the point of

view of our identification strategy, which relies on variation in terms of development status

and timing across different parts of the city.

The analysis focuses on the municipality of Paris exclusively. The city of Paris is part

of a broader metropolitan area, which according to OECD definitions comprises more than

1800 municipalities (OECD, 2023). The disproportionately high administrative fragmenta-

tion that characterises the Paris metropolitan area is the source of governance challenges

and spillovers. For example, the set of car restrictions implemented by the municipality of

Paris in 2016 triggered significant negative spillovers on inhabitants of other municipalities

(Bou Sleiman, 2024). Compared to that policy, the one analysed in this paper is however

significantly more local: the development of bike lanes is unlikely to have affected the travel

choices related to the spending of inhabitants of municipalities other than Paris. This, to-

4The re-elected administration has launched in 2021 a Plan Vélo - stage II (2021-2026) with an increased
budget of 250 million euros, thus keeping up with its ambition to transform Paris into a European capital of
sustainable transport.

5See the press statement about the observatory launch here: https://parisenselle.fr/wp-content/u

ploads/2017/02/PeS_Observatoire-Plan-Velo_Presse_14022017.pdf.
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Figure 1: Development of Plan Vélo

Notes: blue lines show the development of Plan Vélo; gold lines show the original plan. Source: Observatoire
du Plan Vélo de Paris.

gether to align the scope of the evaluation with the electoral base of the government that

enacted the policy, justifies the decision to focus on the municipality of Paris exclusively.

3 Conceptual framework

We model the demand for non-tradable goods in a partial equilibrium setting where con-

sumers must choose in what location to consume the non-tradable good, as well as the mode

of transport they will use to travel to that location.6 Assume that there are j ∈ J locations,

each populated by Rj residents. A resident of location j maximises a Cobb-Douglas utility

by choosing how much to consume of a housing (hj), tradable (cj), and non-tradable (ni
j)

good, and in which location i to purchase the latter:

6This partial equilibrium model is similar to Gorback (2020), but in our case, consumers must also choose
the mode of transport they will use. This is especially important in our case, given that most consumption
trips in Paris are not done by bike.
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maxni
j ,cj ,hj

(
hj
β

)β (cj
α

)α( ni
j

1− α− β

)1−α−β
zij
dij

s.t. Ij = qjhj + cj + pini
j (1)

where Ij is income for residents of location j, qj is the price for the housing good in location

j and pi is the price for the non-tradable good sold in location i. β and α are the share of

expenditure spent on housing and on the tradable good, zij is the idiosyncratic preference

shock for a person residing in j and wishing to consume the non-tradable good in location

i, and dij is the disutility of travelling from location j to location i.

The choice of where to purchase the non-tradable good depends on an idiosyncratic

preference term, zij , which is Fréchet distributed, F (zij = exp(−Eiz
−ε
ij )), with Ei being a

destination-level amenity parameter and ε governing the substitutability between alternative

spending destinations. Secondly, it depends on the disutility of travel from home j to the

shopping destination i, dij .
7

After having decided where to go shopping, consumers choose how to get there. The setup

of the modal choice problem follows closely Tsivanidis (forthcoming). Consumers become car

owners according to a Bernoulli probability with the expected value ρ. They can choose to

commute via a private transport mode (conditionally on owning a car), MPrivate = {Car}, or

via a public one, MPublic = {Walking, Public Transport, Cycling}. They have idiosyncratic

preferences over their preferred mode of transport. The disutility of travel via transport

mode m ∈ {MPrivate ∪MPublic} is given by dijm = exp(κtijm − bm + vijm), where tijm is

the bilateral cost, expressed in terms of time it takes to go from j to i via transport mode

m, κ is the disutility of travel elasticity to transport costs, bm is a mode-specific common

preference shifter, and vijm is a mode-specific idiosyncratic preference shock.

Following McFadden (1974), preference shocks are drawn from a Generalised Extreme

Value (GEV) distribution:

F (v) = 1− exp

−
∑
k

 ∑
m∈Mk

exp((vijm − bm)/λk)

λk
 k ∈ {Private, Public}

The parameter λPublic, or simply λ since λPrivate = 1 by construction, allows for correlation

within the public transport modes nest, with the correlation increasing as λ → 0.

7While we acknowledge that shopping trips might have other locations as origin, such as the workplace
location, our data do not allow us to differentiate revenues depending on trip origin, and thus we assume that
shopping trips depart from the home location of consumers. We do not see this as a major limitation of our
analysis since non-commuting trips tend to be fairly concentrated around the home location of consumers
(Miyauchi et al., 2021).
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Expected disutility from travelling before the realization of the idiosyncratic travel prefer-

ence shocks is given by dij = exp(κtij), where tij is a weighted average of the bilateral travel

cost across transport modes, with weights that depend, in part, on the share of commuters

choosing a given transport mode. Specifically:

tij = −1

κ
ln [(1− ρ) exp(−κtij,0) + ρ exp(−κtij,1)]

tij,0 = −λ

κ
ln

 ∑
k∈Mk

exp

(
bk − κtij,k

λ

)
tij,1 = −1

κ
ln(exp(bcar − κtij,car) + exp(−κtij,0))

(2)

Using Equation 2 into the shopping location choice problem, the probability of purchasing

the non-tradable good in location i is:

Prij =
Ei exp(−νtij)∑
sEs exp(−νtsj)

(3)

The parameter ν = εκ identifies the semi-elasticity of consumption-related travel flows to

travel costs and it is a combination of the disutility of travel elasticity parameter, κ, and the

travel heterogeneity parameter, ε. The probability of travelling from i to j is then increasing

in the destination-specific amenity parameter, Ei, and decreasing in the bilateral expected

travel costs, tij .

The probability defined in Equation 3 can alternatively be interpreted as the share of

residents living in location j that choose to purchase the non-tradable good produced in

location i. Hence, in a context where ti,j declines on average for all origin/destination pairs

thanks to the development of new infrastructure, the expression in Equation 3 entails that

a given shopping destination i experiences an increase in expected revenues accruing from

consumers living in grid cell j only if ti,j drops more than ti′,j with i′ ̸= i. Importantly, since

consumers can shop in one location, a generalised decline in tij does not entail an increase

in aggregate expenditure, but rather an adjustment of expenditure towards locations that

become easier to reach in relative terms.

An expression for market access (from the firm point of view) is obtained by multiplying

the expression in Equation 3 by location j’s total number of residents, Rj , and their income

spent on the non-tradable good, (1− α− β)Ij :

MAi = (1− α− β)
∑
j

Ei exp(−νtij)∑
sEs exp(−νtsj)

×Rj × Ij (4)
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Section 5 describes how the measure of market access defined in Equation 4 is employed

for the evaluation of the economic impact of the new cycling infrastructure.

4 Data

4.1 Geographical unit of analysis and time-frame

Our geographical unit of analysis is equally-sized squared grid cells (used interchangeably

with cells from here onwards) covering all the territory of the city of Paris. We use the 9

arcseconds grid of the European Commission Global Human Settlement Layer project which

divides the city into 2230 cells of approximately 180×180 meters (Schiavina et al., 2019).

Of these 2230, we select 1787 cells with less than 75% of green surface, thus dropping those

falling within Paris’ two urban forests perimeter. We further drop from the sample cells

where we do not consistently record economic activity in the transaction level dataset during

the 2015-2019 analysis period. This brings down the final sample to 1418 final cells. All

our variables are computed at the grid cell level. In the case of data initially available for

different geometries, we use weights to report the information at the grid cell level.8

The observation period we consider goes from January 2015 until November 2019. This

time frame allows for two years of pre-period before the development of Plan Vélo started

in mid-2017. We end our analysis in November 2019 because of the disruptions to public

transport caused by the national strike in December 2019, and the start of the COVID-19

pandemic in March 2020. Both these events strongly impacted the mobility of Parisians and

their spending behaviour (Bounie et al., 2023). The analysis is conducted at the quarter

level.

4.2 Outcome variables

Card transaction data Local economic activity is hard to measure at a very fine ge-

ographical scale. We use the best available dataset for the task presented in this paper,

namely card transaction data. This type of data is becoming increasingly popular in the

economics literature (Relihan, 2022; Allen et al., 2020; Miyauchi et al., 2021) since it offers

the advantage of a high time-frequency and geographical granularity.

Our dataset on card transactions comes from Groupement des Cartes Bancaires CB

(CB), a consortium including the near totality of French banks created in 1984.9 This

8Specifically, we construct weights based on the overlapping surface between polygons and grid cells.
9In 2020, Groupement des Cartes Bancaires CB had more than 100 members (including payment service

providers, banks and e-money institutions).
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dataset is exceptional in its coverage, allowing us to capture a significant proportion of all

consumer expenditure in France. To appreciate the richness of the Groupement des Cartes

Bancaires CB data, consider a few comparisons with national statistics provided for the full

year 2019 by the National Institute of Statistics and Economic Studies (INSEE). GDP in

France in 2019 was estimated as e2,427 billion, with e1,254 billion (52 percent of GDP)

representing household consumption expenditure. Excluding fixed charges (rents, financial

services, insurances) from household consumption expenditure, as these are typically paid

by checks, direct debits and credit transfers, the remaining part of consumer expenditure

amounts to e828 billion (34 percent of GDP). Comparing these figures with total CB card

payments (e494 billion), the value of CB card payments represents 20 percent of French

GDP, 39 percent of total household consumption expenditure, and finally 60 percent of total

household consumption expenditure excluding fixed charges.

We have information at the merchant-month level for the period ranging from 2015 to

2019. Groupement des Cartes Bancaires CB collects each month the value and volume of

transactions made via CB cards, i.e., cards issued by banks part of the CB network. As of

2019, there were 71 million cards in use in the CB system, and 1.8 million CB-affiliated French

merchants (Groupement des Cartes Bancaires, 2019). Figure A2 displays the evolution of

the quarterly nominal total value of transactions recorded on CB payment system during

the period 2015-2019.10

CB data contain the merchant business identification number (SIRET code), thus allow-

ing us to match it with the national business registry (SIRENE), containing information on

the date of creation, the sector of activity (NAF code) and the exact geographical location.

For our analysis, we keep merchants located within the city of Paris and operating in tra-

ditional non-tradable sectors: retail commerce, restaurants, accommodation services, travel

agencies, personal services, bakeries, sports clubs, cinemas and theatres.11 Our final sample

comprises 67,230 unique SIRET codes, accounting for 61% of total card economic activity.

We measure the coverage of our dataset by calculating for each industry the ratio between

the nominal total value of transactions recorded in the (full) CB dataset and the nominal

total value added according to the national accounts. For the three largest non-tradable

industries employed in this analysis (i.e., retail commerce, restaurants and accommodation),

this ratio is well above 50%, which suggests that our dataset provides a good coverage of

10The growth of nominal total value is partly related to increasing card usage in retail payments and
substitution from cash. Nonetheless, in one of our robustness checks, we show that increasing card usage and
substitution from cash does not appear to threaten our analysis.

11The sectors’ NAF codes are 47 (retail commerce), 56 (restaurants), 79 (travel agencies), 55 (accommoda-
tion), 96 (personal services), 1071 (bakeries and pastry shops), 9312Z (sports club), 5914Z (cinemas), 9001Z
and 9004Z (theaters and shows).
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total economic activity.12

Our main outcomes of interest are total revenues, the number of transactions (transac-

tions’ volume) and average revenue per transaction. We collapse them at the grid cell/quarter

level by taking averages and we subsequently log-transform them.

Other outcome variables We look at a few additional outcome variables, which might

also be affected by the development of the new network. First, we get information on

business entry, by counting all newly created establishments at any given point in time and

grid cell according to the national business registry. We replace the number of newly created

establishments with a dummy taking value 1 if any entry takes place and 0 otherwise. This

is because, given the highly geographically disaggregated nature of our analysis, the number

of new establishments is close to zero for the majority of observations.

Next, we build an index of house prices using microdata on the universe of house trans-

actions occurring in Paris from 2015 to 2019 (demandes de valeurs foncières, DVF ). This

data contains information on the sale price and several house characteristics. The data are

geolocalised, allowing us to directly assign each transaction to their respective grid cell. Af-

ter a simple cleaning procedure (Cailly et al. (2019)), we run a hedonic regression of the log

of the sale price on house characteristics (the number of bedrooms, the number of rooms,

the number of squared meters, and a set of dummies identifying different housing types), in

addition to grid cell and time fixed effects. Subsequently, we build a house price index by

adding the constant, the fixed effects and the residuals and aggregating the value at the grid

cell-quarter level.

Finally, we build a measure of car traffic using the total number of cars transiting across

a given grid cell. We use publicly available data from données de comptage routier, which

collects information from 3,342 sensors distributed across the city of Paris. The data measure

the number of cars flowing in front of the sensors at given times of the day. We use the

information on traffic at 5PM in line with travel time data described in the next section and

collapse the daily frequency to the quarterly one by taking quarter-specific averages. We

construct the number of cars transiting through a given grid cell by computing the weighted

average of the closest sensors and using as a weighting factor the relative distance.

4.3 Bilateral travel times

We obtain information on the development of the Plan Vélo from the Observatoire du Plan

Vélo de Paris (see Section 2), which has maintained since July 2017 a geolocalised repository

12Further details about the representativeness of the sectors can be provided upon request.
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keeping track of the daily development of the plan. We use this geolocalised information to

update our transport model at a quarterly level and estimate new cycling travel times on

the first day of February, May, August, and November of every year from 2015 to 2019.

To construct bilateral travel times by mode of transport, we combine the information

on the Plan Vélo infrastructure with OpenStreetMap data,13 and General Transit Feed

Specification (GTFS) files for the city of Paris for each quarter from 2015 to 2019, which are

provided by the RATP group, Paris’s main public transit operator. We use OpenStreetMap

and the data on the Plan Vélo to construct cycling, driving and walking networks for the city

of Paris. Next, we rely on Dijkstra’s algorithm to find the minimum travel time between the

centroids of every pair of grid cells.14 For public transit, we rely on Conveyal’s R5 Routing

Engine to calculate minimum travel times by public transit between the centroids of every

pair of grid cells. This routing engine allows for multimodal trips combining multiple forms

of public transit as well as walking, thus providing a more realistic estimation of travel times

by public transit.

With these travel time matrices by travel mode, we define the bilateral travel time for

every origin i/destination j pair, transport mode m, and quarter t: tijm,t. Figure A3 shows

the evolution over time of bilateral travel times by bike from the city hall of Paris (Hôtel de

Ville) to all possible destinations. Travel times by bike decreased primarily in more peripheral

districts, where commute takes on average longer and where cycling infrastructure was at

the beginning of the sample period nearly absent.

4.4 Control variables

Table 1 summarises the different variables employed in the analysis. We assemble a rich

dataset of time-varying, grid cell-level characteristics from multiple sources. Annual so-

cioeconomic and demographic characteristics, such as total population, the population aged

between 25 and 39 years old, foreign population, number of job seekers and working age

population, are sourced from the Institut national de la statistique et des études economiques

(INSEE). In an attempt to include only pre-determined variables as controls to avoid endo-

geneity, these variables enter our specification with a three-year lag period. INSEE data are

at the IRIS geographical level (the equivalent of census tracts in France). We report variable

x to the grid cell level as follows. We calculate for each IRIS unit k the share of surface

overlapping with grid cell i, sik. Subsequently, we set xi =
∑

k sikxk, where k indexes all

13OpenStreetMap is a community-managed geographic database that includes, among many other things,
detailed information on the road, pedestrian and cycling network in Paris.

14See Appendix Section B for more details on the construction of these networks.
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Table 1: Descriptive statistics

All grid cells employed in the analysis Mean Std. Dev. Min Max

Total revenues (in000s e) 1,652 4,857 0 95,003
Transactions’ volume 27,492 42,041 5 453,622
Avg. revenues p/transaction (e) 68 126 8 2,693
Merchants (#) 28 27 1 232
Population 1,478 773 0 4,216
Population 25-39 395 248 0 1,348
Jobseekers (%) 9 2 0 19
Foreigners (%) 15 6 0 81
Cars (#) 20,782 22,714 29 166,834
House price (ep/m2) 8,543 1,441 6,118 12,733
N 1,418

Note: the percentage of jobseekers is with respect to working age population, the percentage of foreigners
is with respect to total population. All variables correspond to quarter-specific averages of the underlying
monthly values (constant during the year for socioeconomic and demographic characteristics). The data are
quarterly averages referring to 2015. Source: INSEE and Groupement des Cartes Bancaires CB.

IRIS units overlapping with grid cell i.

5 Empirical strategy

We estimate the elasticity of local economic activity to market access through the following

specification:

ln(Yit) = αi + αdt + βln(MAit) + γXit + δLBLDit + eit (5)

where Yit can be 1) total revenues, 2) transactions’ number, 3) average revenues per transac-

tion, all calculated across merchants located in grid cell i at time t. Equation 5 includes grid

cell fixed effects αi and district×time fixed effects αdt. Further, we control for a set of eco-

nomic and demographic characteristics (Xit) varying at the grid cell and time level. Control

variables are (log) population, ratio of foreigners, unemployment rate and (log) population

aged between 25 and 39 years old.

The measure of market access, MAit, employed for the estimation follows the model

described in Section 3. It leverages the modal choice problem in Section 3 and observed

bilateral travel times described in Section 4. More specifically, observed bilateral travel

times are combined with data on commuting flows from the 2018 Census (INSEE, 2018) to

estimate the structural parameters of the modal choice problem. The estimated parameters

are subsequently used to construct bilateral expected travel costs. Together with observed

bilateral travel flows, these are needed to estimate the semi-elasticity of consumption-related
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travel flows to travel costs, ν, which is finally used to construct an empirical counterpart of

market access according to Equation 4, as follows:

MAit =
∑
ij

exp(−ν̂tij,t)∑
s exp(−ν̂tsj,t)

Populationj ×Median incomej . (6)

where ν̂ is estimated and equal to 0.01 (see Appendix C). To isolate the variation in market

access induced exclusively by the fall in travel time by bike, we use pre-plan population and

median income (fixed at 2015), as well as pre-plan travel times by public transport, car and

walking while constructing tij,t. The destination-specific amenity parameter Ei is excluded

from the measure of market access but accounted for in the regressions through grid cell

fixed effects.15

Figure 2 portrays the change in market access induced by the development of cycling

infrastructure. First, market access rises in places situated in the proximity of a new bike

lane if the latter connects with the rest of the network. For example, the construction of bike

lanes in the southwest quadrant of the city did not trigger a sizeable expansion in market

access since these lanes were poorly connected with other parts of the network. Second,

market access in given locations rises only if the reduction in bilateral travel costs exceeds

the average reduction experienced by other locations. This is a direct consequence of the

conceptual framework, according to which consumers shop in only one location.

The potentially non-random placement of transport infrastructure is a challenge to the

estimation of the elasticity of local economic activity to market access. A local government

might push for the new infrastructure to cross a given neighbourhood to revitalise it. The

endogeneity of transport infrastructure placement might also stem from the initiative of

private interest groups, who might lobby the municipal or local government into developing

or not developing new infrastructure in their neighbourhood for their gain.

We address these identification concerns by letting our coefficient of interest be identified

by variation in market access triggered by bike lane development in distant places (Hornbeck

and Rotemberg, forthcoming). This identification strategy requires including a local bike

lane density measure in our specification. By controlling for the intensity of local bike lane

15As bike travel costs go down two things happen: 1) the unweighted average travel cost to go from j
to i drops, and 2) the share of consumers choosing to go shopping by bike increases, thus magnifying the
impact of the reduction in bike travel costs on the bilateral disutility of travelling (which also drops). While
the number of consumers going shopping from j to i by bike unambiguously rises, the number of consumers
choosing to drive might decline if the negative impact on the car modal share outweighs the expected increase
in the number of consumers living in j choosing to go shopping in i. The chosen setup thus allows to account
for substitution across transport modes. However, it should be noted that the choice of using pre-plan car
travel costs might lead to an underestimation of the just described substitution pattern, especially if the
development of bike lanes occurred alongside the introduction of speed limits or the elimination of car lanes
that led to an increase in car travel costs.
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Figure 2: Bike-induced change in quarterly market access (2015q1-2019q4) (EUR)

Notes: bike-induced change in market access (in absolute terms) following the development of Plan Vélo
(black lines).

development, the market access elasticity is identified by variation in market access stemming

from bike infrastructure development occurring further away. The identifying assumption is

that development in distant places is independent of local economic conditions measured in

individual places. This strategy also allows us to focus on the connectivity effect of market

access while controlling for any potential amenity effect, which should be captured by local

bike lane density.

We test two alternative measures of local bike lane density, LBLDit. Like most infras-

tructure networks, Plan Vélo is articulated into a series of bike lanes (which we refer to as

“projects”). In our favourite specification, LBLDit corresponds to the total length of a given

bike lane or project crossing grid cell i as of time t. We take this as our favourite definition

of local bike lane density since we deem it likely that development in a given grid cell is

influenced by the development across cells belonging to the same project. As an alternative

measure, we let LBLDit be equal to the total length of bike lanes situated in grid cell i and

its neighbouring cells as of time t. This second measure accounts for the fact that develop-

ment in grid cell i and time t might be influenced by economic conditions not only in grid

cell i but also in its most immediate neighbours.

Finally, we run an instrumental variable version of Equation 5, without the local bike

lane density control. Market access is instrumented with a market access proxy constructed

using exclusively bilateral travel times with locations farther than one kilometre:
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MA1km
it =

∑
ij|distij>1km

exp(−ν̂tij,t)∑
s exp(−ν̂tsj,t)

Populationj ×Median incomej . (7)

Alternatively, we also test an instrument version corresponding to market access exclud-

ing origin-destination pairs located along the same bike lane or project.

6 Results

6.1 Baseline results

Table 2 presents the estimates of β from Equation 5, divided into three panels, one for each

outcome: the log of total revenues, the log of transactions volume and the log of average

revenue per transaction. The coefficients of market access are positive and significant for the

first two outcomes across all specifications. In column 1, we exclude from Equation 5 the

local bike lane density control. In columns 2 and 3, we include in turn our two measures of

local bike lane density. The instrumental variable results are presented in columns 4 and 5

and are quantitatively similar to the OLS and similarly significant, thus suggesting that the

potential bias caused by the endogeneity is LBLD is less of a concern. Conversely, we do not

detect a statistically significant elasticity of average revenues per transaction in any of the

specifications.

The magnitude of the coefficients oscillates between 4.10 and 5.17. To interpret them, we

rely on the distribution of changes in our market access (MA) measure across time. Because

our measure of MA allows for consumers to travel by different modes (driving, walking,

cycling and public transit), and cycling is the least common mode choice, even relatively

sizeable decreases in travel times by bike will lead to fairly modest increases in our MA

measure. In grid cells where MA increased, market access went up by 0.93% on average over

the whole period. Hence, the average improvement in MA translates into a 4.81% increase in

total revenues and a 4.29% increase in volume over the whole period.16 We provide a more

detailed quantification of the impact of the infrastructure and its distributional consequences

in Section 6.5.

We find that the positive impact of an improvement in market access on local economic

activity materialises with a delay. In Table A4, the baseline measure is replaced with its

lagged value. When we do so, we find the elasticity of total revenues to be positive and

statistically significant across all lags. Similarly, the elasticity of transactions’ volume is

statistically significant across all lags, and it grows in magnitude as lags of market access

16We multiply 0.0093 times 5.173 for the first one, and 0.0093 times 4.603 for the second one.
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Table 2: Elasticity of local economic activity to market access: baseline evidence

Panel A: Log total revenues
(1) (2) (3) (4) (5)

Log MA 4.107** 5.173** 4.500* 4.406** 4.125**
(1.882) (2.280) (2.447) (1.91) (1.85)

Panel B: Log transactions’ volume

Log MA 5.062** 4.603** 4.996** 4.754** 5.005**
(2.041) (2.160) (2.298) (2.05) (2.00)

Panel C: Log average revenues per transaction

Log MA -0.933 0.577 -0.482 -0.339 -0.859
(1.202) (1.404) (1.484) (1.24) (1.18)

N 27,097 27,097 27,097 27,097 27,097
Controls X X X X X
Grid cell FE X X X X X
District×Time FE X X X X X
LBLD None Same project Neighbours - -
Instrument Exclude 1km Exclude project pairs
FS F-stat 1400.93 110718.35
Estimation OLS 2SLS

Notes: coefficients from the estimation of Equation 5. Standard errors are clustered at the grid cell level.
Source: Observatoire du Plan Vélo de Paris, INSEE and Groupement des Cartes Bancaires CB.

further back in time are considered.

Because of the way that our empirical strategy is designed, our estimated coefficients

measure primarily the impact on economic activity to improved access to transport infras-

tructure (“connectivity channel”). However, this may not be the only channel at work: the

development of a new bike lane might affect positively the revenues of local merchants also

through an amenity channel by, for example, improving the appearance of the sidewalk or

street in which they are located. These two channels are correlated but not entirely collinear.

Let us consider the example of two businesses both located on streets where the city coun-

cil decides to build spacious bike lanes. Both streets become cleaner and safer, as the city

council will also likely implement speed restrictions for cars and car traffic will go down.

As a result, more people might choose to go shopping or eat out in those two places by an

“amenity” channel. However, if we assume that only the first of the bike lanes connects

with the existing cycling network, then business volume should rise even more for the first

business since this is not only a nicer place to shop, but it has also become easier to reach. In

our setup, the local bike lane density control, LBLDit, will act as a control for the amenity

channel, thus allowing MAit to identify the connectivity channel.
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6.2 Robustness

In this section, we run a series of robustness tests to address some of the potential issues

that might challenge the causal interpretation of the estimated coefficients.

Centrality bias — We test the robustness of our results to the exclusion of highly con-

nected districts, which might mechanically benefit more from transport infrastructure de-

velopment (Borusyak and Hull, 2023).17 In column 2 of Table 3, we follow Chandra and

Thompson (2000) and exclude central districts, specifically arrondissements 1 to 4. In col-

umn 3, we remove transport hubs. Using information on the public transport network (metro,

tramway, and suburban trains),18 we define as transport hubs those grid cells located less

than 500 meters away from stations featuring three or more public transport connections.19

All coefficients in Table 3 remain positive and statistically significant, thus eliminating cen-

trality bias as a concern in our setting. Finally, in columns 4 and 5 we report the coefficients

of a long difference version of Equation 5. Here the starting period is an average between

2015Q1 and 2015Q2 and the end period is an average between 2019Q3 and 2019Q4. Col-

umn 5 adds as a control the log of the distance of each grid cell from the city centre (Paris

city hall). If central areas receive disproportionate increases in market access due to the

intrinsic network structure of the problem and the bias increases with proximity to the city

centre, this specification would allow to correct for it (Coşar et al., 2022). In line with the

results of the other robustness checks, the coefficients of interest are marginally larger but

not significantly different.

Non-random bike lane development — We investigate whether places that experi-

enced a larger increase in market access did not feature a statistically significantly different

evolution of the outcome variables before any bike lane development took place. To do so,

we run a pre-trends analysis through the following regression:

ln(Yit) = αi + αdt +
∑
t

βt∆ln(MAi,15−19)× τt + γXit + δLBLDit + eit (8)

17The centrality bias test proposed by Borusyak and Hull (2023) is not computationally feasible in our
context due to the very granular scope of our analysis. Currently, it takes approximately 7 hours to calculate
all travel times by bike for every quarter between 2015 and 2019. If followed Borusyak and Hull (2023) and
calculated 999 counterfactual travel time matrices for every quarter between 2015 and 2019, this would take
approximately 291 days of computation time.

18Data come from Île-de-France Mobilités website.
19The stations excluded are: Charles-de-Gaulle Étoile, Châtelet les Halles, Cité, Denfert-Rochereau,

Gare Montparnasse, Gare Saint-Lazare, Gare de Lyon, Gare de l’Est, Gare du Nord, Haussmann Saint-
Lazare/Havre-Caumartin, Invalides, La Motte Picquet - Grenelle, Magenta, Opéra, Place d’Italie, Porte de
Choisy, Porte de Vincennes, Porte des Lilas, République, Saint-Michel Notre-Dame, Strasbourg - Saint-Denis.
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Table 3: Robustness tests: dealing with centrality bias

Panel A: Total revenues
Log-log Long difference

(1) (2) (3) (4) (5)

MA 5.173** 5.225** 5.278** 10.655*** 11.027***
(2.280) (2.353) (2.284) (2.491) (2.506)

Panel B: Transactions’ volume

MA 4.603** 4.793** 4.770** 8.348*** 8.633***
(2.160) (2.230) (2.158) (2.746) (2.763)

N 27,097 25,197 26,817 1,352 1,352

Test Baseline Remove central Remove transport Baseline Log distance
districts hubs from city centre

Notes: baseline estimation as in Table 2 column 2 (col.1); excluding districts 1-4 (col.2); excluding grid
cells located within 500 meters of metro/train hubs featuring at least 3 metro and/or train connections
(col.3). Standard errors are clustered at the grid cell level; long-difference specification: ∆ln(Yi) = αd +
∆βln(MAi) + ∆γXi + ∆δLBLDi + ϵi (col.4); long-difference specification: ∆ln(Yi) = αd + ∆βln(MAi) +
∆γXi+∆δLBLDi+φ ln disti+ϵi (col.5). Source: Observatoire du Plan Vélo de Paris, INSEE andGroupement
des Cartes Bancaires CB.

where we regress our outcome variables on the (log) change in market access that occurred

during 2015q1-2019q4. The (log) change in market access is interacted with time dummies

(τt) and a full set of time-specific coefficients, βt, is estimated. According to the evidence

shown in Figure 3, places that experienced greater market access improvements started

featuring higher levels of economic activity only after development began, thus suggesting

that potential non-random bike lane placement does not challenge our strategy.

Figure 3: Pre-trends analysis
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(b) Log transactions’ volume

Notes: estimated βt from Equation 8 on the y-axis. Source: Observatoire du Plan Vélo de Paris, INSEE and
Groupement des Cartes Bancaires CB.

Non-randomness might characterise not only the location of new bike lanes but also the
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timing of development. Thus, we test whether development timing appears to be as good as

random based on observable characteristics (Deshpande and Li, 2019). We take the sample

of cells i again to be developed at time t = t0, D
t0
i = 0 (and eventually developed), and

regress the development date on the set of demographic variables employed as controls in

the main specification:

Development datei|(D
t0
i = 0) = α+ βXt0

i + ei (9)

We run Equation 9 for different choices of t = t0 and report the results of the estimation

in Table A5. During the first months of construction, it appears that places characterised by

a lower population, a lower percentage of job seekers and more young people received access

to the bike network faster. In the middle of the period (column 2) only the percentage of job

seekers seems to matter. Finally, towards the end of our sample period, during which most

of the construction occurred, population is again associated in a statistically significant way

with the development date. We interpret the absence of systematic correlation between the

control variables and the development date as supportive evidence of development timing

not systematically correlated with local economic conditions.

Exploiting the unfinished Plan Vélo — In a further check, we restrict the sample to

cells that should have featured some bike lane development according to the original Plan

Vélo (see Figure A7). Since these cells were selected to be part of the original plan according

to the same logic, we can expect this subsample to be more homogeneous than the baseline

one. We test this hypothesis through a balancing test (Table A7), which confirms that cells

that received some bike lane development did not differ in a statistically significant way from

cells that did not, except for the length of planned bike lanes. This last element suggests that

the decision to develop first certain bike lanes was probably also driven by the need to start

first with the longer ones, supporting the argument of the quasi-random development timing.

We re-run the baseline specification on this subsample and display the results in Table A6.

Columns 1 and 3 reproduce the baseline results from column 2 of Table 2, while columns

2 and 4 show the coefficients of the subsample. We observe that the coefficients remain

statistically significant and that they are slightly larger than in the baseline estimation. The

average improvement in market access in this subsample (0.0125) implies an increase in total

revenues and transactions’ volume by 10.57% and 11.56%, respectively.

23



Household sorting — Evidence has shown that investment in infrastructure can impact

household sorting Tsivanidis (forthcoming). If this is the case, it could be that part of

the effect of an improvement in market access on business revenues is due to a different

household composition rather than the development of bike lane infrastructure. For instance,

the development of bike lanes might have triggered the inflow of young people, who tend to

go out and consume more in bars/restaurants. To clean our estimates from the potential

effect of changing local household composition, in our baseline specification we control for

(a three-year lag of) local demographic characteristics. Here, we further investigate how

neighbourhoods with different levels of market access changed during the 5 years of the

analysis. We do so by running the pre-trend analysis as in Equation 8, using as an outcome

the available demographic controls.20 Results reported in Figure A6 show that places that

experienced greater market access improvements by the end of the period did not experience

any statistically significant variation in demographic composition. This evidence is consistent

with household sorting being a process occurring in the medium-run horizon, while the time

frame of our analysis ends three years after the beginning of the intervention.

Other potentially confounding factors — In Table A8, we conduct a set of further

robustness tests. In column 2, we control for lagged sectoral shares to make sure that

our results are not driven by changes in local economic activity composition.21 Second, in

columns 3 and 4, we test the robustness of our results to a law passed in 2015 that allowed

businesses located in certain parts of the city to stay open on Sundays.22 Since our card

transaction dataset is available at the monthly frequency, we cannot exclude transactions

carried out on Sundays and directly control for potentially endogenous self-selection into

this policy. Instead, we first remove grid cells that were at all affected by the Sunday Law

(column 3) and second, we include an interaction term between the grid cell-specific share of

surface concerned by the law and time dummies (column 4). Across all tests, the elasticity

of economic activity to market access remains positive and statistically significant.

Test for card usage — Finally, we test if the increase in revenues in places with greater

market access improvement is partly driven by an increase in card usage and substitution

20We remove the controls Xi,t for the purpose of this test. Due to data availability, this test is performed
annually instead of quarterly.

21Specifically, we include the lagged share of revenues for each grid cell and time in the following non-
tradable subsectors: non-specialised retail stores (Code NAF 471), specialised food retail stores (Code NAF
472), specialised non-food retail stores (Code NAF 474-477), fast food restaurants/bars (Code NAF 561),
restaurants (Code NAF 562), bars specialised in the sale of drinks (Code NAF 563).

22See the map of concerned places in Figure A8. Data come from APUR, Mairie de Paris and DRIEA
IF/UD75.
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away from cash payments. To do so, we check if market access increases the share of estab-

lishments featuring card activity in our database. First, we build a card usage intensity index

by dividing the number of establishments present in the Groupement des Cartes Bancaires

CB dataset over the number of establishments that should be active in that same place and

quarter according to the national business registry. Then, we re-run Equation 5 placing this

index on the left-hand side of the equation. If the estimated coefficient were to be found

positive and statistically significant, this would entail that a market access improvement is

associated with an increase in the share of establishments recording card payments, which

would weaken our assumption of card payments as representative of all payments - card

and cash ones. The lack of statistical significance in the coefficients displayed in Table A9

confirms that this is not the case.

6.3 Heterogeneity

In this section, we explore the heterogeneity in the estimated impact of market access im-

provements on local economic activity. First, we build clusters of grid cells that display

similar local establishment characteristics. The characteristics on which we run the cluster-

ing algorithm are a set of (dummy-based) sub-industry indicators as of 2015 (supermarkets

and malls, specialised food retail stores, specialised non-food retail stores, fast food restau-

rants/bars, restaurants, bars); a size dummy taking value 1 if in 2015 average merchant size

in a given grid cell is greater than the median value; an age dummy taking value 1 if in

2015 average merchant age in a given grid cell is greater than the median value calculated

across all cells.23 Next, we run a k-means clustering algorithm (Bock, 2007) for different

values of the number of clusters, k, and we select k = 5 through an elbow test as shown in

Figure A9.24

The characteristics of the five clusters in terms of the variables used for the clustering

exercise are reported in Table A10. The degree of specialisation in stores that sell essen-

tial goods, such as specialised food retail stores, is fairly homogeneous across clusters, while

places tend to differ quite substantially in terms of their degree of specialisation in fast food,

restaurants or bars. Table A11 contains the estimated coefficients from a fully-interacted ver-

sion of Equation 5. The evidence suggests a positive and statistically significant impact of a

23We define a grid cell as specialised in a given industry if the share of revenues coming from that industry
is greater than the share of revenues coming from that industry at the city level.

24The elbow method is a heuristic method widely used in data science to determine the optimal number of
clusters in a dataset. It consists of plotting the sum of squared errors (SSE) calculated across the identified
clusters for each selected number of clusters, and then picking the number of clusters k∗ such that the average
reduction in the SSE obtained by moving from ki−1 to ki for ki < k∗ can be considered substantially larger
than the one obtained for ki > k∗, i.e., by looking for the value of k corresponding to the elbow of the curve.
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market access improvement on economic activity for grid cells specialised in smaller/younger

establishments or fast-foods/cafes/bars. In contrast, clusters specialised in retail and older

businesses do not seem to be as sensitive to changes in market access. A potential expla-

nation is that the development of new cycling infrastructure helps improve establishments’

salience, particularly for younger, smaller and thus less known businesses. Thanks to the

new bike lanes, people commute more on the surface and through a transport mode that is

easier to park than cars. Hence, they become more easily aware of shopping opportunities

and better able to exploit them.

6.4 Other outcomes

In this section, we inspect how a set of additional outcomes are related to market access.

First, we build a dummy indicator that takes value one in the case of positive firm entry. An

improvement in market access may encourage new firms to enter the market. However, our

estimates in column 1 of Table A12 do not support this hypothesis. A potential explanation

can be a rise in commercial rents. As market access improves in a given area, the rental

rate a perspective business must pay to enter the market also rises, thus offsetting the

benefit accruing from a market expansion. Unfortunately, we do not have access to data on

commercial rents to test this hypothesis.

Next, we investigate whether an improvement in market access has an impact on residen-

tial housing prices. We construct a price index by running a hedonic regression of the (log)

of housing prices on individual properties’ characteristics, in addition to grid cell and time

fixed effects (see Section 4.2 for more details on the dataset used). Our estimated coefficient

is not statistically significant (column 2 of Table A12). Bike lane construction is usually

accompanied by the introduction of speed limits and the re-making of footpaths to make

more room for active mobility, which might indeed increase the value of a property (so-called

“amenity” channel). In our setting, the coefficient that is suited for measuring this channel

is the one on local bike lane density, which is indeed positive and strongly significant. An

extra kilometre of bike lanes is associated with an increase in house prices by 6.9%. In

contrast, the coefficient on market access captures primarily the impact of an improvement

in accessibility through cycling. The absence of a statistically significant link with housing

prices underscores the weaker capitalisation of cycling infrastructure improvements in hous-

ing prices in this context, in contrast with the one found in other types of infrastructure

investment, such as public transport.

Third, we use as an outcome the log for the total number of cars transiting across a
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given grid cell during a given time. We use publicly available data on car traffic measured

by multiple sensors distributed across the city of Paris to obtain a measure of car flow

at the grid cell-quarter level.25 We find a negative impact of market access on car traffic

(column 3 of Table A12). Multiple mechanisms can explain this result. First, car usage goes

down because cycling has become relatively more attractive and a subset of former car users

switches to cycling. Second, bike lane deployment usually implies the removal of car parking

slots or the introduction of speed limits, which tend to discourage car usage. By favouring

modal switching, the introduction of bike lanes helps attenuate the negative externalities

associated with car congestion, with a positive impact likely extending beyond the areas

directly interested by the development of bike lanes (Hall, 2021).

6.5 Distributional consequences of Plan Vélo

The new infrastructure entailed significant spatial reallocation of spending. The approach

taken in this paper is indeed well-suited to analyse the distributional consequences of the new

infrastructure, while it lacks the features necessary to analyse the absolute gains. Market

access in a given place increases if bilateral travel costs to that place decline, on average, more

than to other places in the city.26 This means, essentially, that market access gains (and, thus,

potential demand) in a given place can take place only at the expense of other locations. Our

framework enables us to identify what are the places that have gained in relative terms and

those that lost with the development of the new infrastructure. We multiply the difference

between 2019q4 and pre-Plan Vélo market access by 5.17 (the baseline elasticity - see column

2 of Table 2), thus obtaining the percentage point change in total revenues implied by the

development of Plan Vélo only. We find this difference to be positive for 40% of cells

(+1.9 p.p. on average across “winners”) and negative for 60% (−0.9 p.p. on average across

“losers”).

The uneven impact of the infrastructure can be explained by analysing the characteristics

of the places that gained from the development of the bike network. In Figure 2, we show

how market access has changed during our period of analysis. The first thing to notice is that

places where market access improved tend to be 1) centrally located, and 2) characterised

on average by lower income (Figure A10), owing primarily to the distribution of population.

Hence, Plan Vélo redistributed demand for non-tradables away from more peripheral but

residents-rich districts towards more central but less residents-rich ones. As an example,

before the development of Plan Vélo residents located respectively in the south-west and

25see Section 4.2 for more details on the data.
26See Section 3 for the formal definition of our market access measure.
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north-west quadrants of the city might have preferred to go shopping locally since it was for

them costly to reach the city centre. After the development of new bike lanes connecting

these two parts of the city with the city centre, a larger fraction of residents choose to take a

bike ride and go shopping in the city centre instead. The same reasoning holds for residents of

the central districts, who may now find it easier to go shopping in peripheral ones. However,

central districts in Paris are mostly shopping locations and have low population density, so

the change in spending patterns is more likely to benefit businesses located in the city centre

at the disadvantage of those located in peripheral districts.

7 Conclusion

Despite many existing narrative accounts, sound quantitative assessments of the conse-

quences of bike infrastructure development for local economic activity are scarce. The de-

velopment of bike infrastructure can affect local economic activity in different ways. It can

reshape the geography of spending towards locations that become better accessible. Fur-

thermore, by favouring a switch to active mobility, it can benefit certain local businesses

by making them more salient, and easier to visit, on top of potential “footfall” effects that

materialise if the construction of the bike lane contributes to making streets more pedestrian-

friendly.

We empirically evaluate the impact of the construction of a large-scale bike infrastructure

network, the Plan Vélo, occurring between 2017 and 2019 in the city of Paris, on businesses

operating in the non-tradable sector. We find robust evidence in favour of an increase in

economic activity, as proxied by the total value and volume of card transactions in parts of

the city subject to an increase in market access triggered by the development of the new

infrastructure.

Our analysis of the distributional impact of the new infrastructure highlights how the

Plan Vélo redistributed economic activity away from more peripheral/more densely pop-

ulated districts towards more central/more scarcely populated ones. The analysis of the

distributional consequences are useful for current policy-makers, especially given that the

second edition of Plan Vélo is currently under construction.
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Garcia-López, M. A., M. Magagnoli, and E. Viladecans (2024): “People on bikes

getting coffee. The impact of cycle lanes in cities,” mimeo.

Gibbons, S. and S. Machin (2005): “Valuing rail access using transport innovations,”

Journal of Urban Economics, 57, 148–169.

30



Gonzalez-Navarro, M. and M. A. Turner (2018): “Subways and urban growth: Evi-

dence from earth,” Journal of Urban Economics, 108, 85–106.

Gorback, C. (2020): “Your uber has arrived: Ridesharing and the redistribution of eco-

nomic activity,” Manuscript, University of Pennsylvania.

Groupement des Cartes Bancaires (2019): “Cartes Bancaires en chiffres,” https:

//www.cartes-bancaires.com/a-propos/cb-en-chiffres/.

Hall, J. (2021): “Can Tolling Help Everyone? Estimating the Aggregate and Distributional

Consequences of Congestion Pricing,” Journal of the European Economic Association, 19,

441—-474.

Heblich, S., S. J. Redding, and D. M. Sturm (2020): “The making of the modern

metropolis: evidence from London,” The Quarterly Journal of Economics, 135, 2059–2133.

Hornbeck, R. and M. Rotemberg (forthcoming): “Growth off the rails: Aggregate

productivity growth in distorted economies,” Journal of Political Economy.

IEA (2023): “Greenhouse gas emissions from Energy Data Explorer,” https://www.iea.

org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-d

ata-explorer.

INSEE (2018): “Mobilités professionnelles en 2018 : déplacements domicile - lieu de travail
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Appendix

A Additional figures and tables

Table A1: Cycling speeds by type of edge in the cycling network

Type of edge in cycling network Adjustment to default speed

Cycle track 1
Cycle lane 0.50
Primary, trunk or motorway 0.17
Secondary or tertiary 0.25
Unclassified one-way streets 0.50
Other (mainly residential) with no bike signs or infrastructure 0.50

Notes: For each highway type as defined by the OpenStreetMap classification, we assign a different cycling
speed. The speed is calculated as a fraction of the maximum cycling speed, which is fixed at 16 km/h for
cycle tracks. All other ways are adjusted by the adjustment number in this table, so, for example, the cycling
speed on secondary and tertiary roads is 16 × 0.25 = 4 km/h. Back to Appendix Section B.

Table A2: Initial travel length and changes in travel times by bike

District Initial commute Decrease in commute
Bike Car Public transit Walking Bike

Most central districts

1 Fast Fast Fast Fast Intermediate
2 Fast Fast Fast Fast Slow
3 Fast Fast Fast Fast Intermediate
4 Fast Fast Fast Fast Intermediate

Intermediate districts

5 Intermediate Intermediate Intermediate Intermediate Slow
6 Fast Fast Intermediate Fast Slow
7 Intermediate Intermediate Intermediate Intermediate Intermediate
8 Intermediate Intermediate Intermediate Intermediate Intermediate
9 Intermediate Intermediate Fast Intermediate Slow
10 Intermediate Intermediate Intermediate Intermediate Intermediate
11 Intermediate Intermediate Intermediate Intermediate Fast

Less central districts

12 Intermediate Intermediate Intermediate Slow Fast
13 Intermediate Intermediate Intermediate Intermediate Intermediate
14 Intermediate Intermediate Slow Intermediate Slow
15 Slow Slow Slow Intermediate Intermediate
16 Slow Slow Slow Slow Fast
17 Slow Slow Intermediate Slow Fast
18 Intermediate Intermediate Intermediate Intermediate Intermediate
19 Slow Slow Slow Slow Fast
20 Slow Slow Slow Slow Intermediate

Notes: Initial refers to 2015Q1. Bilateral travel times are averaged by district. “Fast” initial commute
(decrease in commute) if initial commute (decrease in commute) lies in the bottom 25th percentile of the
district-specific travel time (decrease in travel time) distribution; “intermediate” if it lies between the 25th
and 75th percentile; “slow” if it lies in the top 25th percentile.
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Table A3: Estimated modal choice parameters

Description Parameter Value

Disutility of travel elasticity to travel time κ .003
Inverse of correlation across mode-specific λ .041
idiosyncratic preference shocks
Cycling preference shifter bcycling -.065
Public transport preference shifter bpt .029
Car preference shifter bcar -2.76

Note: The conditional logit estimation is implemented using the nlogit STATA module. The base category
is walking. Back to Section 4.

Table A4: Elasticity of local economic activity to market access: lagged impact

Panel A: Log total revenues
(1) (2) (3) (4)

Log MA 5.173**
(2.280)

First lag log MA 4.970**
(2.304)

Second lag log MA 4.575**
(2.209)

Third lag log MA 5.515**
(2.311)

Panel B: Log transactions’ volume

Log MA 4.603**
(2.160)

First lag log MA 5.378**
(2.284)

Second lag log MA 5.442**
(2.320)

Third lag log MA 6.582***
(2.502)

N 27,097 25,744 24,391 23,038

Notes: baseline estimation as in Table 2 column 2, estimating the elasticity to lagged market access. Standard
errors are clustered at the grid cell level. Source: Observatoire du Plan Vélo de Paris, INSEE and Groupement
des Cartes Bancaires CB. Back to Section 6.1.
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Table A5: Robustness tests: testing random development timing

Treatment date
2017q2 2018q1 2018q4

Log population -3.294*** -0.612 -0.625*
(1.028) (0.583) (0.362)

% Foreigners 16.64*** -1.879 -2.106
(4.818) (2.883) (1.937)

% Job seekers -19.50** -17.68*** -0.706
(8.822) (5.196) (3.791)

Log population 25-39 yrs old 2.673*** 0.561 0.480
(0.907) (0.501) (0.307)

N 271 201 146

Notes: the dependent variable is the date on which the cells in the still-to-be-developed sample as of 2017q2
(col.1), 2018q1 (col.2) and 2018q4 (col.3) are going to be treated. The covariates refer to 2017q2 (col.1),
2018q1 (col.2), 2018q4 (col.3). Back to Section 6.2.

Table A6: Robustness tests: keeping only Plan Vélo subsample

Log total revenues Log transactions’ volume
(1) (2) (3) (4)

Log MA 5.173** 8.129*** 4.603** 8.897***
(2.280) (2.953) (2.160) (3.010)

N 27,097 9,220 27,097 9,220
Long Diff MA .009 .013 .009 .013
Controls X X X X
Grid cell FE X X X X
District×Time FE X X X X
LBLD Same project Same project Same project Same project
Sample Baseline Plan Vélo Baseline Plan Vélo
Estimation OLS

Notes: baseline estimation as in Table 2 column 2 restricted to the subsample of grid cells intersected by the
original Plan Vélo. Standard errors are clustered at the grid cell level. Source: Observatoire du Plan Vélo de
Paris, INSEE and Groupement des Cartes Bancaires CB. Back to Section 6.2.
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Table A7: Balancing test of local characteristics in the Plan Vélo subsample between grid
cells where development had taken place by the end of 2019 and those where it did not

Developed Not developed

Mean Std Dev Mean Std Dev Difference t-stat p-value

MA (in000s) 3539 969 3491 803 -47 0.57 0.57
Roads (m) 1117 342 1125 313 8 -0.25 0.80
Planned bike lanes (m) 190 109 173 89 -17 1.88 0.06
Population 1414 872 1393 751 -21 0.28 0.78
Foreigners (%) 16 5 15 4 -0 1.16 0.25
Jobseekers (%) 9 2 9 2 -0 0.73 0.47
Population 25-39 397 281 374 231 -23 0.96 0.34
Entrant firms (#) 0 1 1 1 0 -0.57 0.57
Car flow (#) 24368 23820 19518 19703 -4850 2.38 0.02
House price (p/m2) 8821 1635 9048 1717 227 -1.45 0.15
Value (in000s) 1582 3060 2588 7283 1006 -1.93 0.05
Volume 30645 47632 37053 54856 6409 -1.34 0.18
Avg. value p/transaction 69 152 69 69 1 -0.05 0.96
Avg. value p/merchant 48504 77339 61199 127410 12695 -1.29 0.20
Merchants (#) 31 31 36 28 5 -1.75 0.08
N 229 . 232 . . . .

Notes: the data refer to 2015. Source: Observatoire du Plan Vélo de Paris, INSEE and Groupement des
Cartes Bancaires CB. Back to Section 6.2.

Table A8: Robustness tests: miscellanea

Panel A: Log total revenues
(1) (2) (3) (4)

Log MA 5.173** 4.264* 6.814*** 5.211**
(2.280) (2.206) (2.575) (2.280)

Panel B: Log transactions’ volume

Log MA 4.603** 4.140* 5.970** 4.652**
(2.160) (2.307) (2.418) (2.155)

N 27,097 25,740 22,157 27,097

Test Baseline Sectoral Remove affected Sunday Law
shares by Sunday Law trend

Notes: baseline estimation as in Table 2 column 2 (col.1); augmented to include lagged sectoral shares as
controls (col.2); excluding cells affected by the Sunday Law (col.3); augmented to include an interaction term
between the grid cell-specific share of surface concerned by the 2015 “Sunday Law” and time dummies (col.4);
excluding grid cells located within 100 meters from the itinerary of tramway T3b (col.5); . Standard errors
are clustered at the grid cell level. Source: Observatoire du Plan Vélo de Paris, INSEE and Groupement des
Cartes Bancaires CB. Back to Section 6.2.
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Table A9: Robustness tests: elasticity of card usage intensity to market access

Card usage intensity index
(1) (2) (3) (4)

Log MA 0.270
(0.750)

First lag log MA 0.238
(0.871)

Second lag log MA 0.291
(0.916)

Third lag log MA 0.372
(0.989)

N 26,948 25,604 24,260 22,916

Notes: baseline estimation as in Table 2 column 2 applied to the ratio between the number of establishments
reporting transactions in the Groupement des Cartes Bancaires CB dataset in a given quarter and grid
cell, and the number of establishments active in that same quarter and grid cells according to the business
registry (SIRENE). Source: SIRENE, Observatoire du Plan Vélo de Paris, INSEE and Groupement des Cartes
Bancaires CB. Back to Section 6.2.

Table A10: Local merchant characteristics clusters: descriptive statistics

Cluster Retail Restaurants Firm characteristics

Non spec. Spec./food Spec./other Fast-food Restaurants Bars Large Old

1 30 23 10 78 8 18 18 28
2 18 63 21 90 12 65 75 63
3 6 61 89 47 19 43 74 83
4 39 28 32 1 7 8 64 80
5 29 25 64 43 60 23 71 34

All 28 35 30 56 15 27 49 52

Notes: col.1-6 contain the % of cells per each cluster specialised in 2015 in the corresponding activities.
Col.7-8 contain the % of cells in each cluster such that in 2015 average merchant size (col.7) or age (col.8)
was greater than the median value. Source: Groupement des Cartes Bancaires CB. Back to Section 6.3.
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Table A11: Testing heterogeneous effects with respect to local merchant characteristics

Log total revenues Log transactions’ volume

Log MA× Small and new businesses 7.189* 5.074
(3.849) (3.600)

Log MA× Spec. food stores/fast food/bars 8.011*** 5.802*
(2.703) (3.282)

Log MA× Spec. retail + old businesses 1.689 3.651
(3.816) (4.086)

Log MA× Retail + old businesses 6.330 0.811
(5.236) (3.946)

Log MA× Spec. retail/restaurants 0.454 6.674
+ new businesses (3.271) (4.438)

N 24,777 24,777

Notes: baseline estimation as in Table 2 column 2, testing heterogeneous effects through the inclusion of
interaction terms between market access and cluster-specific dummies. Source: Observatoire du Plan Vélo de
Paris, INSEE and Groupement des Cartes Bancaires CB. Back to Section 6.3.

Table A12: Elasticity of other outcomes to market access

Business Entry Log of House Prices Car Volume

Log MA -0.390 0.742 -9.345***
(0.744) (0.800) (3.246)

LBLD - same project (km) -0.013 0.069*** -0.209***
(0.011) (0.007) (0.051)

N 27,097 26,993 26,946

Notes: coefficients from the estimation of Equation 5, testing the elasticity of other outcomes to market access.
Standard errors are clustered at the grid cell level. Source: Observatoire du Plan Vélo de Paris, INSEE and
Groupement des Cartes Bancaires CB. Back to Section 6.4.
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Figure A1: Total number of bike trips recorded in Paris over time

Notes: all bike trips are recorded by sensors distributed across the city. Source: Comptage vélo - Données
compteurs dataset from https://www.data.gouv.fr/en/datasets/comptage-velo-historique-donnees-c

ompteurs-et-sites-de-comptage/.

Figure A2: Total card transaction revenues taking place in Paris over time

Source: Groupement des Cartes Bancaires CB.
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Figure A3: Bilateral travel time by bike at different points in time

Notes: bilateral travel time by bike over time from Hôtel de Ville (red dot) to other parts of the city. Overlaid
black lines capture Plan Vélo development over time. Back to Section 4.3.

Figure A4: Example of cycling route before and after Plan Vélo

Notes: example of the least-cost path for cycling calculated by our routing algorithm for the first quarter of
2015 (before the Plan Vélo), in red, and for the last quarter of 2019 (after the Plan Vélo), in blue. The trip
in 2015 was estimated to take 114 minutes, while the trip in 2019 would take 92 minutes, implying a 20%
reduction in travel time. Back to Appendix Section B.
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Figure A5: Bilateral travel times by bike: Google Maps vs own estimates
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Notes: comparison between bilateral travel times estimated by Google Maps on June 2024 for cycling trips
in Paris and the travel time estimates for those same origin-destination pairs for the fourth quarter of 2019
using our routing algorithm. 8,000 origin-destination pairs were chosen at random from the set of all trips
from the centroid of one cell to the centroid of another cell in Paris. We then queried these trips on Google
Maps and compared the estimated travel times to those produced by our routing algorithm for Q4, 2019.
The red line represents a linear fit of the data, with a coefficient of 0.61 and an intercept of 1.2 minutes. The
R-squared of this regression is 0.9. Back to Appendix Section B.

41



Figure A6: Household sorting: changes in demographic characteristics
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Notes: estimated βt from Equation 8 on the y-axis. Source: Observatoire du Plan Vélo de Paris, INSEE and
Groupement des Cartes Bancaires CB. Back to Section 6.2.

Figure A7: Grid cells crossed by 2015 Plan Vélo

Notes: blue grid cells are those that were developed, green grid cells correspond to chunks of the original Plan
Vélo that were not yet developed as of 2019q4. Source: Observatoire du Plan Vélo de Paris. Back to Section
6.2.
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Figure A8: Places concerned by the Sunday Law

Notes: red zones include international tourism areas, tourism areas, commercial areas and train stations.
Source: APUR, Mairie de Paris and DRIEA IF/UD75. Back to Section 6.2

Figure A9: Elbow test for the selection of the optimal number of clusters

Notes: sum of squared errors on the vertical axis. Back to Section 6.3

Figure A10: Spatial distribution of purchasing power

Notes: spending in a given grid cell j corresponds to Populationj ×Median incomej in 2015. Source: INSEE.
Back to Section 6.2.
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B Calculating bilateral travel times by mode

OpenStreetMap is used to estimate transport-mode-specific bilateral travel times between

the centroid of each pair of grid cells forming the geographical unit of our analysis. More

specifically, we combine three sources of data: i) the information gathered in step 1 on the

development of the Plan Vélo; ii) the historical snapshot of the OpenStreetMap project

(OSM) for each quarter from 2015 to 201927; iii) and General Transit Feed Specification

(GTFS) files for the city of Paris for each quarter from 2015 to 2019, provided by the Paris

main public transit operator, RATP group.28

Bilateral travel time matrices (in minutes) for public transit are obtained through the

travel time matrix() function of the Rapid Realistic Routing with R5 package for R.29 This

package uses Conveyal’s R5 Routing Engine to calculate realistic travel times allowing it to

incorporate multiple forms of public transit as well as walking within the same trip. For all

public transit travel times, we fix the departure time at 17:00 hs, or the closest time available

after 17:00 hs.

The construction of travel time matrices for the other transport modes (walking, cycling,

and driving) follows a different, more flexible approach. We start by extracting the network

of all ways30 that is traversable by given a mode of travel (i.e, driving, walking or cycling)

from the OSM data. We then assign travel speed along each of these ways for each mode. For

the driving network, we assign the speed limit (in km/h) of each street segment, according

to the information on OSM for that specific moment in time. For the walking network, we

assign a fixed speed of 4.5 km/h for the entire network. For speeds of the cycling network,

we rely on information from OSM to classify each edge into six categories, summarised in

Table A1. We assign the fastest cycling speed to cycle tracks, which are protected bike lanes

that are either off-road or provide some form of physical barrier blocking car traffic.31 The

Plan Vélo provides this type of cycling infrastructure. As the new cycling infrastructure is

built, information from the Plan Vélo is matched with the OSM network to transform the

roads that overlap with the Plan Vélo into cycle tracks, irrespective of their status in OSM

data. By doing this, we can match the timing of the new infrastructure more precisely, given

that OSM is a crowd-sourced project that might suffer from a small lag in updating the true

27Information corresponding to the first day of February, May, August, and November of every year from
2015 to 2019.

28GTFS files are an Open Standard system used to distribute relevant information about transit systems.
They include all timetables for a public transit system, the location of all bus stops and metro stations, among
other relevant information.

29See Pereira et al. (2021) for more details on this package.
30A way is defined as any linear feature of a map, such as a road, a sidewalk, a river, etc.
31These are equivalent to what we refer to as “bike lanes” when discussing the Plan Vélo infrastructure.
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conditions on the ground. For cycle tracks, we assign a cycling speed of 16 km/h. For all

other categories, we adjust the speed downward by an adjustment factor that goes from half

the speed (for cycle lanes32 and residential roads) to 0.17 times the speed of cycle tracks for

primary, trunk and motorway roads.33

Having derived travel speeds for each edge in each type of network (driving, cycling and

walking),34 we apply Dijkstra’s algorithm to find the minimum travel time between each pair

of centroids, by network.35 We allow travel times to be asymmetric, namely the travel time

from point A to point B can be different from the travel time from point B to point A, and

repeat the calculation for every type of network (cycling, walking and driving) and quarter.

With these travel time matrices, we can define the bilateral travel time for each origin

i/destination j pair, each mode m, and quarter: tijm. As the plan gets developed, bilateral

travel times by bike on average decline, and more so in the proximity of the new Plan Vélo

infrastructure.

Figure A4 illustrates how our routing algorithm captures the impact of the new bike

infrastructure on the least-cost path for cycling. In this figure, we show the route calculated

by our routing algorithm for the same trip taken by bike in the first quarter of 2015 (in

red) and then for the last quarter of 2019 (in blue). We can see that after the Plan Vélo is

implemented, the optimal path favours streets with bike lanes, resulting in a slightly longer

trip (measured in distance), but that is 20% faster (going from 114 minutes in 2015 to 92

minutes in 2019).

In Figure A5, we compare the travel times by bike estimated by Google Maps on June

2024 for a set of 8,000 random origin-destination pairs to the travel times for these same

trips estimated by our routing algorithm in the last quarter of 2019. We can see that our

estimates are highly correlated with those produced by Google Maps. A linear regression of

our estimates on the Google Maps travel times produces a coefficient of 0.61 (significant at

a 1% level), and an intercept of 1.2 minutes. This suggests that our travel time estimates

are largely proportional to those estimated by Google Maps.

32Cycle lanes, as opposed to tracks, usually lie within the roadway itself and do not provide any physical
separation with traffic. They are usually marked with painted lines and signs on the pavement and may be
shared with buses.

33These adjustments to the cycling speed follow a similar logic to Broach (2016), which provides generalised
cost formulas for cycling, where the cost of cycling depends on the type of infrastructure and the density of
traffic, among other factors.

34An edge in these networks is defined as an ordered pair of nodes, and a node is created every time two
ways intersect. Within a city, most of these edges coincide with the intuitive notion of a city block.

35To do so, we treat the network as a directed graph, where the weights for each edge are defined by the
time it takes to traverse said edge. Technically, we match the centroid to the closest node on the graph, so
the travel times are to the closest nodes on the graph to the centroids of each cell.
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C Derivation of the market access measure

The derivation of the market access measure is articulated in the following steps.

Step 1: conditional logit estimation — Observed bilateral travel costs are converted

into disutilities (Equation 1), dij , through a modal choice conditional logit estimation (Sec-

tion 3) based on the commuting module of the 2018 Census (INSEE, 2018). We retain

full-time workers residing and commuting within the city of Paris, for a total of 163.000

trips with non-missing information on the transport mode chosen to commute to work. In-

formation on the place of residence/work in the survey is available at the district level, for

a total of 20 districts, or arrondissements. The 2230-by-2230 commuting cost matrices are

then aggregated into 20-by-20 matrices to match them with the information contained in

the commuting survey. We choose simple bilateral averages, but test the robustness of the

estimates to alternative aggregation routines.36

The output of the conditional logit estimation is displayed in Table A3. We estimate a

disutility of travel elasticity κ = 0.003: an increase in travel time via a specific transport mode

by 10 minutes translates into a 3 percentage points lower probability of choosing to commute

via that mode compared to walking (the base category). This elasticity is three times smaller

than in Tsivanidis (forthcoming).37 The smaller size of the municipality of Paris compared to

Bogotá could explain the discrepancy: shorter distances reduce consumers’ responsiveness to

differences in travel times across transport modes.38 The inverse of correlation across mode-

specific idiosyncratic preference shocks is 0.041, thus denoting a sizeable correlation across

idiosyncratic mode-specific preference shocks. Both the cycling and car-specific common

preference shifters are negative, implying a preference by consumers for walking between

two destinations holding travel time constant, as opposed to cycling or driving. Conversely,

the common preference shifter for public transport is positive, denoting a preference for

public transport compared to walking, once again assuming identical travel times.

The estimated parameters are combined with information on the car ownership rate in

the city of Paris ρ = 0.37 to obtain an estimate of expected bilateral travel costs tij according

to Equation 2.3940

36Specifically, we tried aggregating travel costs using the median as well as bilateral population-weighted
means.

37The conditional logit estimation relies on work-related trips. However, recent work by Miyauchi et al.
(2021) finds the commuting elasticity estimated based on consumption-related trips to be higher than the one
based on work-related trips.

38The modal shares are: 71% by public transport, 7% by bike, 16% by walking and 6% by car.
39A normalization is implemented to ensure that tii = 0. More specifically, tij,0 is rescaled by

−(λ/κ) ln(exp(bwalking/λ) + exp(bcycling/λ) + exp(bpt/λ) and tij,1 is rescaled by −(1/κ) ln(exp(bcar) + 1).
40Paris car ownership rate is taken from Maligorne (2017)

46



Step 2: estimating the semi-elasticity of consumption-related travel flows to

travel costs — To build an empirical counterpart of the market access measure described

in Equation 4, an estimate of ν, namely the semi-elasticity of travel flows with respect to

bilateral travel costs, is needed. However, bilateral travel flows are not directly observed in

our dataset. Hence, we developed an imputation procedure to calculate a proxy for them in

2019. Specifically, we observe daily transactions indexed by the merchant and card identifier.

We do not know where the cardholder lives, nor do we have any demographic information

on him/her. However, we can impute a “most likely” residence location based on each

cardholder’s shopping history.

1. First, we retain transactions occurring in the city of Paris on weekends and on weekdays

after 18h;

2. Second, we further retain transactions that are usually carried out in the proximity

of one’s residence, which we identify as those transactions occurring in merchants

identified by one of the following sectoral codes: 1071, 1072, 4724 (bakeries), 4773

(pharmacies), 4711B-D (supermarkets, minimarkets), 4721, 4722, 4723, 4725, 4729

(food stores);

3. Next, we keep cardholders for which the number of observed transactions is N ≥ 9.

We end up with a sample of 3.2 million cards, about 1/8th of the total number of cards

present in the data, but amounting to nearly half (49%) of transactions total value. For

this subset of cards, we calculate the modal shopping destination and we set it as “most

likely” residence location, j. Bilateral travel flows, xij , are calculated by summing across

transactions carried out by cardholders with imputed residence location j towards merchants

with (known) business location i, and they are used to estimate the empirical counterpart

of Equation 3:

lnxij = αi + αj + νtij + eij (10)

In Equation 10, tij are the bilateral travel costs obtained in the previous step, and αi

and αj are, respectively, business and residence location fixed effects. The estimation is

repeated for four different quarters of 2018. We consistently estimate ν̂ = 0.1, similar to 0.07

in Ahlfeldt et al. (2015).

A market access measure is constructed in line with Equation 4 taking as inputs the

estimate for ν̂ and tij ∀i, j, and used in the main estimating equation of the paper (Equation

5).
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